

POINT

1

基

基本原理

Basic principle

- ①高圧力下で高粘度化する性状を持つトラクショングリースの油膜を介した転がりによる動力伝達です。
- ②弾性変形させ組み込まれた遊星ローラ、太陽ローラおよび固定輪それぞれの接触部には圧接力Pが発生し、これにより油膜が高粘度化(圧接力Pが働いている時のみ)して、ローラの接触部で動力の伝達が可能となります。
- ③トラクション力(索引力)Tは(1)式で表すことができます。

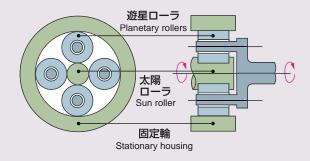
④遊星ローラの公転を入力側とし太陽ローラの自転を出 力側として利用した増速装置です。

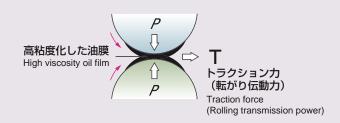
増速比nは(2)式で表すことができます。

$$n = 1 + \frac{D}{d}$$
(2)

ただしD:固定輪内径寸法、d:太陽ローラ外径寸法

- ①Power of the traction drive is transmitted by the rolling contact mechanism via oil film of traction grease characterized by high viscosity at high pressures.
- ②Contact pressure P is created at each contact surface on planetary rollers, a sun roller and a stationary housing, which are assembled with elastic deformation. By this pressure, the oil films changes to high viscosity one (only when contact pressure P is imposed) so that the power can be transmitted at the roller contact area.
- 3The traction force T is formulated by Equation (1).


$$T=\mu P$$
(1) where, μ :Traction coefficient, P:Contact pressure


This unit is a speed increasing device which the revolution of the planetary roller is used for input side and the rotation of the sun roller is output side.

The speed increasing ratio is formulated by Equation (2).

$$n=1+\frac{D}{d}$$
(2)

where, D:Bore diameter of stationary housing d:Outside diameter of sun roller

POINT 2

持長

Features

位置決めブロック

(オプション)

回り止め及び、位置決めピンにクーラント を供給。特殊形状も製作します。

Positioning Block

(Optional for use on M/C)

The positioning block and pin mechanism supplies coolant to the tool.

位置決めピン

ワンタッチ調整式

調整範囲40mm PATP

Positioning Pin

"One-touch" adjustment, with in a height range of 40mm.

ナット

バランス調整済みです。

Nut

The balance adjustment is already made in the factory.

多種のM/C主軸に対し 汎用性がある!

More widely usable, due to its adaptability to a great variety of M/C spindles.

砥 石

Grinding

wheel

オリエンテーションリング

ドライブキーと位置決めピンの位相関係が0°~360°調整可能。

Orientation Ring

The fitting position of a positioning block differs among machining centers. The position can be adjusted by rotating the orientation ring within 360°.

クーラントノズル

刃先の突き出しに合わせ自在に角度調整 が可能。

Coolant Nozzle

The angle adjustment of the coolant nozzle can be made easily by hand. The spray angle of the coolant is adjusted to match the inserted cutter length.

コレット

超精密仕上げのコレットを使用。振れ精度 はミクロン単位。サイズを1ミリ間隔でご 用意。

Collet

Only a under super precision collet, runout within 3 microns, should be used. Various sizes can be supplied by mm unit.

Various sizes can be supplied by mm unit. Please order sizes to match the shanks of tools to be used.

刃 目

ストレートシャンクのドリル、エンドミル、 砥石が使用できます

Cutters

A drill, end mill and grinding wheel with a straight shank can be applied.

ATC対応

小型・軽量に加えて、付帯設備が不要であるため、ATCが可能です。

低振動

トラクションドライブの特徴である滑らかな回転により、騒音振動が小さく研削加工も可能です。

伝動力

安定したトルク伝達により、エアモータに見られる回転変動 がありません。

高速性

トラクションドライブは転がりによる伝達機構であるため、 高速回転においても良好な潤滑性があります。さらに、セラ ミック軸受の採用、クーラントによるボディの冷却など、高 速化の対策は万全です。

ATC-Ready

エンドミル

End mill

(0)

ドリル

Drill

Compact and light, the TDU is ready for ATC... with no extra attachments necessary.

Low Vibration

The Traction Drive Unit is particularly smooth-running, and without noise vibration, it even makes grinding possible on your M/C.

Transmission Power

A stable torque transmission produced stable rpm, unlike air motor speed accelerators.

High Speed

Since the traction drive is run by a transmission mechanism based on rolling contact, high lubrication can be maintained even at high speed rotation.

The uses of ceramic bearings and through-body coolant are incorporated to ensure reliable, long-lasting high speed operation.

寸法表 DIMENSIONS E

BT > P.87,88

多用途に対応する充実したシリーズ

A complete series supports a full range of applications.

TDU40

高剛性タイプ Super rigid Type

3.4×Spindle rev. Max.12,000rpm

加 工 例 【溝切削加工】

材 質:アルミ合金

工 具: 2枚刃超硬エンドミルφ16

回 転 数: 12,000rpm

加工深さ:5mm

送り速度: 1,000mm/min

Cutting Example [Groove Milling]

Material : Aluminum alloy

End mill : 16mm dia. T/C, 2-blade

Speed : 12,000rpm Cut. depth : 5mm Feed : 1000mm/min

TDU17-N

標準タイプ Standard Type

6×Spindle rev. Max.30,000rpm

加 工 例 【溝切削加工】

材 質:アルミ合金

工 具: 2枚刃超硬エンドミルφ4

回 転 数: 28,000rpm 加工深さ: 2mm

加工床と・と川川

送り速度: 1,000mm/min

Cutting Example [Groove Milling]

Material : Aluminum alloy

End mill : 4mm dia. T/C, 2-blade Speed : 28,000rpm

Cut. depth: 2mm

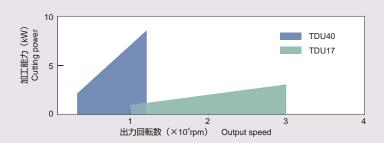
Feed : 1,000mm/min

	高剛性タイプ Super rigid type	標準タイプ Standard type
形 式 Type	TDU40	TDU17-N
增速比 Speed increasing ratio	3.4×	6×
回転数(min ⁻¹) Speed (rpm)	MAX. 12,000	MAX. 30,000
出力トルク(Nm) Output torque	7	1
出力動力(kw) * ¹ Output power	8.8	3.1
テーパ *2 Taper	BT50	BT40 / BT50
工具把握径(mm) Tool grip diameter	φ1.5~20	φ0.5~10
重量(kgW) Net weight	11.5	5.4 / 7.9

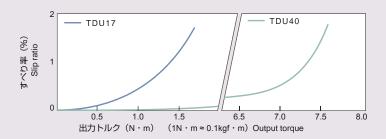
- *1 各々の最高回転数における最大出力
- *2 BTテーパ以外 (SK,CV,その他) でのご注文については 別途ご用命ください

保証時間 2,000時間 保証期間 1年以内

- *1 Max. output for each max. speed.
- *2 Other tapers are also available: SK40,CV40,HSK63 equivalent to BT40. SK50,CV50,HSK100 equivalent to BT50.

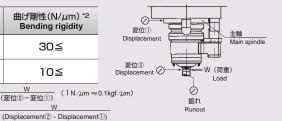

Warranted total running time : 2,000hrs Period of warranted : One year

POINT 4

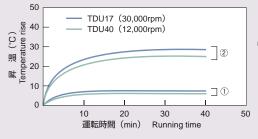

広範囲な加工領域をカバー

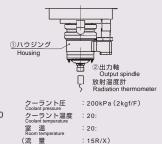
Covering a wide application range...

加工領域
Application range

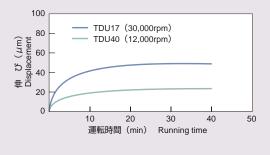


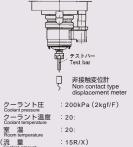
2 トルク伝達
Torque transmission characteristics

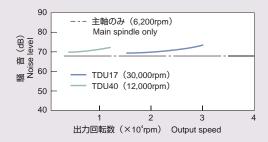


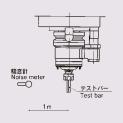

3 振れ・曲げ剛性 Runout and Bending rigidity

形 式 Type	振れ(μm) *1 Runout	曲げ剛性(N/µm) *2 Bending rigidity
TDU40	≦5	30≦
TDU17	≦ 5	10≦
*1):スピンドル単体の振れ *2):曲げ剛性= W (変位②一変位①) (1N / μm ≈		




4 | 昇温(温度-クーラント温度) Temperature rise (Temperature-Coolant temperature)




5 軸方向の伸び Axial displacement

6 騒音 Noise level

